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ABSTRACT: We investigate the influence of a quantized photon field
on thermoelectric transport of electrons through a quantum wire
embedded in a photon cavity. The quantum wire is connected to two
electron reservoirs at different temperatures leading to the generation of
a thermoelectric current. The transient thermoelectric current strongly
depends on the photon energy and the number of photons initially in
the cavity. Two different regimes are studied, off-resonant and on-
resonant polarized fields, with photon energy smaller than, or equal to,
the energy spacing between some of the lowest states in the quantum
wire. We observe that the current is inverted for the off-resonant photon
field due to participation of photon replica states in the transport. A
reduction in the current is recorded for the resonant photon field, a direct consequence of the Rabi-splitting.
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Thermoelectric transport is a subject of intense study for
future energy harvesting devices.1,2 Low-dimensional

electronic systems have a potential to improve thermoelectric
efficiency compared to bulk electronic materials due to their
highly peaked density of states for system sizes in the range of
nanometers.3 A thermoelectric current (TEC) can be generated
by a temperature gradient ΔT in an electronic system. In the
linear response regime, the temperature difference approaches
zero and the thermoelectric efficiency is characterized by the
dimensionless figure of merit ZT.4 In the nonlinear response
regime, the thermoelectric efficiency is represented by the bias
voltage ΔV generated by ΔT.5 In both regimes, the thermal
efficiency can be high in nanodevices.
Since the 1990s, various aspects of thermoelectric transport

have been investigated in several types of quantum systems,
such as single quantum dots,6−8 double quantum dots,9−11

quantum wires,12,13 or nanowires.14 The Coulomb interaction
between the charge carriers influences the thermal transport
through small structures like quantum dots, forming plateaus
(Coulomb blockade) in the TEC.7,8,15 The transition from the
Coulomb blockade regime to the Kondo regime in thermo-
electric transport has been studied for a single-level quantum
dot.16,17 Dynamic aspects of thermoelectric transport have been
investigated,10,18 and the influence of static nonlinear behavior
on the efficiency of power conversion has been studied.19 In
mesoscopic systems, the dephasing and inelastic scattering
processes are found to affect the thermoelectric transport and
generate a magnetic field asymmetry in the Seebeck
coefficient.20 The thermoelectric effect through a serial double
quantum dot weakly coupled to ferromagnetic leads has been

investigated, and the influence of temperature and interdot
tunneling on the figure of merit has been demonstrated.21 In
the above-mentioned examples, the thermoelectric effect has
been investigeted in the steady state regime. Recently, a method
to study the time-dependent thermal transport in nanoscale
devices has been proposed. The approach has been shown to
recover the linear relation between the thermal current and the
temperature gradient.22

Another interesting aspect of this issue is the importance of
photon radiation to control thermal transport. Recently, time-
dependent photon radiation has been used to enhance the heat
and thermoelectric transport.23,24 Photonic heat current
through an arbitrary circuit element coupled to two dissipative
reservoirs has been explored at finite temperatures.25 Transfer
of heat via photons between two metals is reported in a study of
photonic thermopower, where the metals are coupled by a
circuit containing a linear reactive impedance.26

An active field of research is the search for an appropriate
thermodynamic description of mesoscopic electron systems.
We will circumvent this issue here by using an approach
commonly applied to small open systems, but the reader
interested in the possibility to use linear response formalism we
refer to a study of Balachandran et al.27

Here, we describe the TEC in a finite quantum wire (the
central system) coupled to two leads (electron reservoirs) with
different temperatures, but at the same chemical potential. The
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temperature gradient causes electron flow from the leads to the
quantum wire and vice versa. In addition, the quantum wire is
coupled to a cavity field with photons polarized in the direction
of the electron propagation in the quantum wire. A generalized
master equation formalism is used to calculate the time-
dependent evolution of the electrons in the quantum wire.28

We show how the TEC can be controlled by cavity parameters
such as the photon energy in either off-resonant or resonant
condition. The single photon mode in the cavity can change
both the magnitude and the sign of the thermal current induced
by the temperature gradient. Therefore, the use of cavity
photons can be seen as a new method to amplify or control
thermoelectric current in nanodevices.

■ MODEL
We assume a short GaAs quantum wire formed in a two-
dimensional electron gas in the x−y plane, with an effective
mass m* = 0.067me and relative dielectric constant κ = 12.3.
The quantum wire is hard-wall confined at the ends in the x-
direction, the transport direction, and parabolically confined in
the y-direction. The wire with length Lx = 150 nm is weakly
coupled to two leads held at different temperatures. The total
system is exposed to an external perpendicular static magnetic
field B = 0.1 T with cyclotron energy ℏωc = 0.172 meV. The
transverse confinement energy of the electrons in the quantum
wire is equal to that of the leads ℏΩ0 = ℏΩl = 2.0 meV, where l
refers to the left (L) or the right (R) lead. The effective

confinement frequency is ωΩ = Ω +ω 0
2

c
2 .

The many-body Hamiltonian of the coupled electron-photon
system is

= + +γ γ−H H H He e (1)

where He is the Hamiltonian of the electronic system, including
the static Coulomb repulsion between the electrons29
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Herein, π = p + (e/c)A, with p the canonical momentum, and
A = −Byx ̂ is the vector potential for the static external magnetic
field B = Bz.̂ ψ(r) = ∑iψi(r)di and ψ†(r) = ∑iψi*(r)di

† are the
Fermionic field operators with di(d

†
i) being the annihilation-

(creation) operators for an electron in the single electron state |
i⟩ corresponding to ψi. The second term of the eq 2 is the
electron−electron interaction in the quantum wire with UC
being the Coulomb interaction potential.30

The cavity photon field is defined by the quantized vector
potential Aγ in the Coulomb gauge. Therefore, the second term
in the eq 1 can be written as Hγ = ℏωγa

†a introducing the
Hamiltonian of the single free cavity photon mode with energy
ℏωγ, and a(a†) being the photon annihilation(creation)
operators. The vector potential of the photon field Aγ is
given by = +γ

†a aA r e( ) ( ) , with the amplitude of the
photon field, and e = ex for parallel polarized photon field
(TE011), or e = ey for perpendicular polarized photon field
(TE101). We have assumed the wavelength of the cavity mode
to be much larger than the size of the electron system, Lx. The
last term of eq 1 represents the full electron−photon
interaction
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including both the para- and the diamagnetic interactions,
respectively.30 The charge is ρ = −eψ†ψ, and the charge current
density is defined by

π πψ ψ ψ ψ= − * + *† †e
m

j
2

{ ( ) ( ) }
(4)

The electron−electron and the electron−photon interactions
are treated by exact diagonalization in appropriately truncated
Fock-spaces constructed from a tensor product of the
eigenstates of the single-electron Hamiltonian, and the
eigenstates of the photon number operator. The characteristic
energy scale of the electron-photon coupling (effective coupling
constant) is gγ = eAaωΩω/c.

31

In order to calculate the thermoelectric current, a non-
equilibrium property, we use a projection formalism32,33 leading
to a generalized non-Markovian master equation describing the
time evolution of the reduced density operator ρS(t) of the
open central system (eq 1; the interacting electrons and cavity
photons) under the dissipative influenced of the external leads,
weakly coupled to the system, acting as a reservoir of electrons
and energy.34 The lead system coupling strength corresponds
to 0.5 meV.
The coupling of the leads and the system is described by a

tunneling Hamiltonian, with a contact region extending
approximately 16 nm in the transport direction (x-direction)
into the lead and the central system from their interface and 30
nm along the interface.34 This guarantees that the coupling of
the sub-bands in the leads and the central system observes their
parity like is seen in a Lippmann−Schwinger scattering
formalism.35 In addition, the coupling of individual states in
the leads and the central system depends on their presence in
the contact region.
We define the thermoelectric current (TEC), in the steady

state, in terms of the reduced density operator such that

= =I ITEC L R (5)

where IL is the current from the left lead to the quantum wire
defined as

ρ= ̇I t t Q( ) Tr[ ( ) ]SL
L

(6)

and the current from the quantum wire to the right lead (IR) is

ρ= − ̇I t t Q( ) Tr[ ( ) ]SR
R

(7)

with the charge operator Q = eN expressed in terms of the
electron number operator N. The partial density operators ρS

L,R

correspond to the coupling of the central system to the L and R
leads, respectively, and is more explicitly calculated, see
Moldoveanu et al.,36 in the weak coupling regime. In a steady
state, the right and left currents are of the same magnitude, IL =
IR, but in the transient regime, their difference indicates the
charging or discharging of the central system. The steady state
is independent of the original number of photons and electrons
in the system, but in the later transient regime that we are
interested in here, around t ≈ 220 ps, the currents still depend
on the original photon and electron numbers.
The photons in the cavity are linearly polarized in the x-

direction. In the short quantum wire with uniform shape in the
transport direction, this polarization strengthens the photon
effects on the transport. We tune the photon energy and the
number of photons initially present in the cavity in order to
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explore how these initial conditions or parameters can be used
to control the TEC in the quantum wire in the late transient
regime.
Figure 1 shows a schematic diagram of the quantum wire

(white color) coupled to the left lead (red color) with

temperature TL and the right lead (blue color) with
temperature TR. The red zigzag arrows indicate the polarized
photon field.

■ OFF-RESONANCE PHOTON FIELD
In this section, we assume the photon energy is smaller than the
energy spacing between the three lowest energy states of the
quantum wire. For instance, the photon energy is ℏωγ < E1 −
E0, where E0(E1) is the energy of the ground state (first excited
state) of the quantum wire, respectively.
Figure 2a shows the energy spectrum versus electron−

photon coupling strength gγ, where 0ES (golden circles) are

zero-electron states, 1ES (blue squares) are one-electron states,
and the horizontal lines (red lines) indicate the location of the
resonance condition for the lowest three one-electron states
with the chemical potentials of the leads, μL = μR = Eμ, at gγ = 0.
We start with no electron−photon coupling, gγ = 0.0 meV. In
this case, we concentrate our attention on the three lowest
states in a selected range of the energy spectrum: the ground
state, the first excited state, and the second excited state, with
energy values E0 = 1.25 meV, E1 = 1.99 meV, and E2 = 3.23
meV, respectively. In the presence of an electron−photon
coupling, with an off-resonant photon field, photon replicas of
the above-mentioned three states are formed. The separation
between the photon replica states is approximately equal to the

photon energy for the selected values of the electron−photon
coupling strength used here. The photon replicas play an
important role in the thermoelectric transport.
Figure 3 demonstrates the TEC (a) and the occupation (b)

for the three lowest states of the quantum wire in the case of no

electron−photon coupling, gγ = 0.0 meV. We fix the
temperature of the right lead at kBTR = 0.05 meV, and vary
the temperature of the left lead to kBTL = 0.1 (blue diamonds),
0.15 (green squares), and 0.25 meV (golden circles). In Figure
3a, the TEC as a function of chemical potential μ = μL = μR is
plotted at time t = 220 ps. At this time point, the system is in
the late transient regime very close to a steady state. The
concept of a TEC can be loosely explained as being related to
the Fermi functions of the leads. The TEC is zero in the
following cases: half filling, where the Fermi function of the
leads is equal to 0.5, and integer filling, where the Fermi
function of the leads is either 0 or 1.6

For instance, the TEC is zero at μ = 1.25 meV corresponding
to approximately half filling of the ground state, as is shown in
Figure 3b. In addition, the TEC is again zero at μ = 0.7 and 1.7
meV for the integer filling of occupation 0 and 1, respectively.
In the presence of a higher temperature of the left lead at

kBTL = 0.25 meV, a shifting in the TEC is observed for the first
excited state at μ = 1.99 meV. The current deviation occurs due
to an increased thermal smearing at the higher temperature. In
this case, both the ground state and the first excited state
participate in the electron transport at μ = 1.99 meV.
Therefore, the current becomes negative, instead of the zero
value at a lower temperature.
Furthermore, we notice that the second excited state of the

quantum wire is in resonance with the second subband of the
leads. The wave function of the second excited state of the
central system is symmetric in the y-direction, while the wave
functions of the second subband of the leads are antisymmetric
in the y-direction. The electron transport from a symmetric to
an antisymmetric state or vice versa is not allowed due to the
geometry sensitive function that describes the coupling
between the quantum wire and the leads.28,34 Therefore, a

Figure 1. Schematic diagram of a quantum wire (white color)
connected to a left lead (pink color) with temperature TL and a right
lead (blue color) with temperature TR. The photon field is represented
by the red zigzag arrows.

Figure 2. Energy spectrum of the quantum wire versus electron−
photon coupling strength gγ. 0ES (golden circles) are zero-electron
states, 1ES (blue squares) are one-electron states, and the horizontal
lines (red lines) display the location of the resonances of the leads with
the three lowest one-electron states in the case of off-resonance (a)
and resonance (b) photon field. The photon number is Nγ = 2, and the
photons are linearly polarized in the x-direction. The magnetic field is
B = 0.1 T, and ℏΩ0 = 2.0 meV.

Figure 3. TEC (a) and occupation (b) as functions of the chemical
potential μ = μL = μR plotted at time t = 220 ps. The temperature of
the right lead is fixed at TR = 0.58 K, implying thermal energy 0.05
meV, and varying the temperature of the left lead to TL = 1.16, 1.742,
and 2.901 K, implying thermal energies 0.1 (blue diamonds), 0.15
(green squares), and 0.25 meV (golden circles), respectively. The red
vertical lines show the resonance condition for the ground state at μ =
1.25 meV, the first excited state at μ = 1.99 meV, and the second
excited state at μ = 3.23 meV, respectively. The magnetic field is B =
0.1 T, and ℏΩ0 = 2.0 meV.
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plateau in the TEC is formed for the second excited state
around μ = 3.23 meV.
Now, we assume the quantum wire is embedded in a photon

cavity with a photon mode of energy ℏωγ = 0.3 meV, and the
cavity initially contains two photons Nγ = 2. The photons are
linearly polarized in the x-direction. The photon energy is
smaller than the energy spacing between the ground state and
the first excited state on one hand, and the first excited state
and the second excited state on the other hand. This means
that the system is off-resonant with respect to the photon field.
The energy spectrum of the quantum wire embedded in the
cavity with off-resonant photon field was shown in Figure 2a.
The TEC as a function of the chemical potential of the leads

is displayed in Figure 4a for the system without a photon cavity

gγ = 0.0 meV (blue diamonds) and with a photon cavity for the
electron-photon coupling strength gγ = 0.05 (green squares),
0.10 (golden triangles), and 0.15 meV (red circles) in the case
of off-resonant photon field at time t = 220 ps. We observe that
the current through the ground state is almost unchanged in
the presence of a photon cavity, but the characteristics of the
TEC of the first excited state and the second excited state are
drastically modified. The influence of cavity photon field is to
invert the TEC from “positive” to “negative” values or vice
versa around the first excited state at μ = 1.99 meV. The two-
photon replica of the ground state at μ = 1.84 meV contributes
to the electron transport, with the first excited state leading to
the current flip from “positive” to “negative” values. In addition,
the two-photon replica of the first excited state around μ = 2.59
meV becomes active in the transport. Therefore, the TEC is
inverted from “negative” to “positive” values around μ = 2.1
meV.
The electron transport is affected around the second excited

state in the presence of the photon cavity, as is shown in Figure
4a. This is because the two-photon replica of the first excited
state is getting into resonance with the second sub-band of the
leads. The two-photon replica of the first excited state has an

antisymmetric wave function in the y-direction, and the wave
functions of the second sub-band are antisymmetric as well.
Consequently, the electrons transfer from the second sub-band
of the leads to the two-photon replica of the first excited state
of the quantum wire. A TEC is thus generated.
The effects of the initial number of photons on the TEC is

shown in Figure 5. The off-resonance system (Figure 5a) is

rather insensitive to the exact number of photons in the low
energy regime. This is because both one- and two-photon
replica states are close to each other in the off-resonant photon
field. The thermal smearing leads to participation of both states
in the electron transport. Therefore, the selected initial photon
number in the cavity does not influence the TEC.

■ ON-RESONANCE PHOTON FIELD
In this section we assume the photon energy is approximately
equal to the energy spacing between the ground state and the
first excited state, ℏωγ ≅ E1 − E0. The system under
consideration is in resonance with the photon field. The
photon energy is assumed to be ℏωγ = 0.74 meV and the cavity
initially contains one photon, Nγ = 1.
The energy spectrum of the quantum wire as a function of

the electron-photon coupling strength gγ in the presence of the
resonant photon field is displayed in Figure 2b, where 0ES
(golden circles) are zero-electron states and 1ES (blue squares)
are one-electron states. The horizontal lines (red lines) display
the energy of possible transport resonances. In the case of no
electron−photon coupling at gγ = 0.0 meV, the three states
mentioned in the previous section are again found in the
selected range of energy. In the presence of the cavity field, the
one-photon replica of the ground state is observed near the first
excited state at gγ = 0.05 meV.
Increasing the electron−photon coupling strength to gγ =

0.15 meV, the one-photon replica of the ground state is
lowered in energy, and the first excited state shifts up.
Therefore, the separation between these two states increases.

Figure 4. TEC as a function of the chemical potential μ = μL = μR
plotted at time t = 220 ps without photon cavity gγ = 0.0 meV (blue
diamonds), and with photon cavity for the electron−photon coupling
strength gγ = 0.05 (green squares), 0.10 (golden triangles), and 0.15
meV (red circles) in the case of off-resonance (a) and resonance (b)
photon field. The photons are linearly polarized in the x-direction. The
temperature of the left (right) lead is fixed at TL = 1.16 K (TR = 0.58
K), implying thermal energy kBTL = 0.10 meV (kBTR = 0.05 meV).
The magnetic field is B = 0.1 T, and ℏΩ0 = 2.0 meV.

Figure 5. TEC as a function of the chemical potential μ = μL = μR
plotted at time t = 220 ps without photon cavity gγ = 0.0 meV (blue
diamonds) and with photon cavity initially containing one photon, Nγ

= 1 (green squares), and two photons, Nγ = 2 (golden triangles), in the
case of off-resonance (a) and resonance (b) photon field. The photons
are linearly polarized in the x-direction. The temperature of the left
(right) lead is fixed at TL = 1.16 K (TR = 0.58 K), implying thermal
energy kBTL = 0.10 meV (kBTR = 0.05 meV). The magnetic field is B =
0.1 T, and ℏΩ0 = 2.0 meV.
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Similar splitting in the energy spectrum can be seen in the
higher energy states between 2.5−3.0 meV. The splitting is the
Rabi-splitting.
Figure 4b shows TEC versus chemical potential at time t =

220 ps without a photon cavity gγ = 0.0 meV (blue diamonds)
and with a photon cavity for the electron−photon coupling
strength gγ = 0.05 (green squares), 0.10 (golden triangles), and
0.15 meV (red circles) in the case of resonant of the photon
field. The temperature of the left lead is fixed at TL = 1.16 K,
implying thermal energy kBTL = 0.10 meV, and the temperature
of the right lead is assumed to be TR = 0.58 K, with thermal
energy kBTR = 0.05 meV.
In the resonant photon field, a reduction in the TEC is

observed with increasing electron−photon coupling strength.
For gγ = 0.05 meV, the following three states contribute to the
electron transport at μ = 1.10 meV with “positive” current, and
at μ = 1.40 meV with “negative” current: The ground state, the
one-photon replica of the ground state and the first excited
state. Increasing the electron−photon coupling strength to gγ =
0.15 meV, the first excited state shifts up and does not
participate in the electron transport. Therefore, the TEC is
suppressed.
The TEC decreases at μ = 1.90 and 2.10 meV around the

first excited state. The current suppression is due to
participation of the one-photon replica of the first excited
state with the energy 2.65 meV at gγ = 0.05 meV. But at the
higher electron−photon coupling strength gγ = 0.15 meV, the
one-photon replica of the first excited state is not active in the
transport. This is because it moves up for high electron−
photon coupling strength. Consequently, the TEC drops down.
This reduction in the thermoelectric current is a direct
consequence of the Rabi-splitting of the energy levels of the
system. Earlier, we have established dynamic effects of the Rabi-
splitting on the transport current through the system at a finite
bias voltage.37 The electrons are getting active in the transport
around the second excited state. The activation of the electron
transport there is due to the symmetry properties of the one-
photon replica of the first excited state.
We have verified that the TEC flattens out as the

temperature of both leads is increased, keeping their temper-
ature difference constant.
Opposite to the off-resonant system, the initial photon

number in the resonant system can change the TEC
substantially, as is seen in Figure 5b. The reason is the larger
separation between photon replica states here. Consequently,
the place of the active photon replicas in the energy spectrum is
important, and the initial photon number influences the TEC.

■ CONCLUSIONS
We studied numerically the thermoelectric transport properties
of a short quantum wire interacting with either the off- or on-
resonant cavity-photon field. The quantum wire is assumed to
be connected to two electron reservoirs with different
temperatures. The temperature gradient accelerates electrons
from the leads to the quantum wire, creating a thermoelectric
current.
We showed that a plateau in the TEC is formed due to

symmetry properties of the energy states of the quantum wire
and the leads in the case of no cavity photon field.
By applying a linearly polarized photon field, the photon

replica states result in an inverted thermoelectric transport in
the off-resonance regime. Moreover, in the on-resonant photon
field the effects of a Rabi-splitting in the energy spectrum

appears leading to a reduction in the thermoelectric current. In
both regimes, the current plateaus that were formed in the
absence of a photon field are removed due to the generation of
photon replica states.
Our results point to new opportunities to experimentally

control thermoelectric transport properties of nanodevices with
a cavity photon field.
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(18) Lim, J. S.; Loṕez, R.; Sańchez, D. Dynamic thermoelectric and
heat transport in mesoscopic capacitors. Phys. Rev. B: Condens. Matter
Mater. Phys. 2013, 88, 201304.
(19) Svensson, S. F.; Hoffmann, E. A.; Nakpathomkun, N.; Wu, P.
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